Part Number Hot Search : 
S3237 ATMEGA16 EM84110 K3699 MIC29300 AP89042 BT390 FC113
Product Description
Full Text Search
 

To Download ADA4610-2ACPZ-R7 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  low noise, preci sion, rail - to - rail output, jfet dual op erational amp lifier data sheet ada4610 - 2 rev. a information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 0206 2- 9106, u.s.a. tel: 781.329.4700 www.analog.com fax: 781.461.3113 ? 2011 C 2012 analog devices, inc. all rights reserved. features low offset voltage b grade: 0.4 m v maximum a grade : 1 m v maximum low offset voltage drift b grade: 4 v/c maximum a grade : 8 v/c maximum low input bias current: 5 pa typical at v s y = 15 v dual - supply operation: 4.5 v to 1 5 v low noise 7.3 n v/hz typical at f = 1 khz 0.45 v p - p at 0.1 hz to 10 hz low distortion: 0. 00006 % no phase reversal rail - to - r ail o utput unity gain stable applications instrumentation medical instruments multipole filters precision current measurement photodiode amplifier s sensors audio pin configurations notes 1. the exposed p ad must be connected t o v?. 1 out a 2 ?in a 3 +in a 4 v? 7 out b 8 v+ 6 ?in b 5 +in b 09646-001 pin 1 indicator ada4610-2 top view (not to scale) figure 1. 8 - lead lfcsp (cp suffix) 09646-002 out a 1 ?in a 2 +in a 3 v? 4 v+ 8 out b 7 ?in b 6 +in b 5 ada4610-2 t op view (not to scale) figure 2. 8 - lead soic_n (r suffix) and 8 - lead msop (rm suffix) general description the ada4610 - 2 is a dual channel, precision jfet amplifier that features low input voltage and current noise, offset voltage, input bias current, and rail - to - rail output. the combination of low offset, noise, and very low input bias current makes these amplifiers especially suitable for high impedance sensor amplification and precise current measurements using shunts. with excellent dc precision, low noise, and fast settling time , the ada4610 - 2 provides superior accuracy in medical instruments, electronic measurement, and automated test equipment. unlike many competitive amplifiers, the ada4610 - 2 maintains fast settling performance with substantial capacitive loads. unlike many older jfet amplifiers, the ada4610 - 2 does not suffer from output phase reversal when input voltages exceed the maximum common - mode vol tage range. the fast slew rate and great stability with capacitive loads make the ada4610 - 2 a perfect fit for high performance filters. low input bias currents, low offset, and low noise result in a wide dy namic range for photodiode amplifier circuits. low noise and distortion, high output current, and excellent speed make the ada4610 - 2 a great choice for audio applications. the ada4610 - 2 is specified ov er the ?40 c to +125c extended industrial temperature range. the ada4610 - 2 is available in the 8 - lead narrow soic , 8 - lead msop, and 8 - lead lfcsp packages.
ada4610- 2 data sheet rev. a | page 2 of 20 table of contents features .............................................................................................. 1 applications ....................................................................................... 1 pin configurations ........................................................................... 1 general description ......................................................................... 1 revision history ............................................................................... 2 specifications ..................................................................................... 3 electrical characteristics ............................................................. 4 absolute maximum ratings ............................................................ 6 esd caution ...................................................................................6 typical performance characteristics ..............................................7 comparative voltage and variable voltage graphs ............... 13 applications information .............................................................. 15 comparator operation .............................................................. 15 outline dimensions ....................................................................... 16 ordering guide .......................................................................... 17 revision history 5 / 12 rev. 0 to rev. a changes to data sheet title and general description section .. 1 changed input impedance, differential to input capacitance, differential in table 1 ....................................................................... 3 added input resistance in table 1 ................................................. 3 changed input impedance, differential to input capacitance, differential in table 2 ....................................................................... 4 added input resistanc e in table 2 ................................................. 4 added figure 9, figure 10, and figure 14 ..................................... 8 added figure 15 ................................................................................ 9 updated outline dimensions ....................................................... 16 changes to ordering guide .......................................................... 17 1 2 / 11 re v ision 0 : initial version
data sheet ada4610- 2 rev. a | page 3 of 20 specifications v s y = 5 v, v cm = 0 v, t a = 25c, unless otherwise noted. table 1 . parameter symbol test conditions /comments min typ max unit input characteristics offset voltage (b grade) 1 v os 0.2 0.4 mv ? 40c < t a < +125c 0.8 mv offset voltage (a grade) 1 v os 0.4 1 mv ? 40c < t a < +125c 1.8 mv offset voltage drift (b grade) 2 v os /t 0.5 4 v/c offset voltage drift (a grade) 2 v os /t 1 8 v/c input bias current i b 5 2 5 pa ? 40c < t a < +125c 1 .5 na input offset current i os 2 2 0 pa ? 40c < t a < +125c 0. 2 5 na input voltage range ? 2.5 +2.5 v common - mode rejection ratio cm rr v cm = ? 2. 5 v to +2.5 v 94 110 db ? 40c < t a < +125c 86 db large signal voltage gain a vo r l = 2 k?, v out = ? 3 .5 v to +3 .5 v 98 100 db ? 40c < t a < +125c 86 db input capacitance , differential v cm = 0 v 3.1 pf input capacitance , com mon - mode v cm = 0 v 4.8 pf input resistance v cm = 0 v >1 10 13 ? output characteristics output voltage high v oh r l = 2 k? 4.85 4.90 v ? 40c < t a < +125c 4.6 v r l = 600 ? 4.6 4.89 v ? 40c < t a < +125c 4.05 v output volta ge low v ol r l = 2 k? ?4.95 ?4.9 v ? 40c < t a < +125c ?4.75 v r l = 600 ? ?4.9 ?4.8 v ? 40c < t a < +125c ?4.4 v short - circuit current i sc 63 ma power supply power supply rejection ratio psrr v sy = 4 .5 v to 18 v 106 125 db ? 40c < t a < +125c 103 db supply current/amplifier i s i out = 0 ma 1.5 1.7 ma ? 40c < t a < +125c 1.85 ma dynamic performance gain bandwidth product gbp v in = 5 mv p - p, r l = 2 k?, a v = 100 15.4 mhz unity - gain crossover ug c v in = 5 mv p - p, r l = 2 k?, a v = ?10 9.3 mhz phase margin m 61 degrees ?3 db closed - loop bandwidth ?3 db a v = 1, v in = 5 mv p -p 10.6 mhz noise performance voltage noise e n p - p 0.1 hz to 10 hz 0.45 v p - p voltage noise density e n f = 10 hz 14 nv/hz f = 100 hz 8.2 nv/hz f = 1 khz 7.3 nv/hz f = 10 khz 7.3 nv/hz 1 offset voltage does not include solder heat resistance. 2 guaranteed by design and characterization.
ada4610- 2 data sheet rev. a | page 4 of 20 electrical character istics v s y = 15 v, v cm = 0 v, t a = 25c, unless otherwise noted. table 2 . parameter symbol test co nditions /comments min typ max unit input characteristics offset voltage (b grade) 1 v os 0.2 0.4 mv ? 40c < t a < +125c 0.8 mv offset voltage (a grade) 1 v os 0.4 1 mv ? 40c < t a < +125c 1.8 mv off set voltage drift (b grade) 2 v os /t 0.5 4 v/c offset voltage drift ( a grade) 2 v os /t 1 8 v/c input bias current i b 5 2 5 pa ? 40c < t a < +125c 1 .5 na input offset current i os 2 2 0 pa ? 40c < t a < +125c 0. 2 5 na input voltage range ? 12.5 +12.5 v common - mode rejection ratio cmrr v cm = ? 12.5 v to +12.5 v 100 115 db ? 40c < t a < +125c 96 db large signal voltage gain a vo r l = 2 k?, v out = 13.5 v 104 107 db ? 40c < t a < +125 c 91 db input capacitance , differential v cm = 0 v 3.1 pf input capacitance , common - mode v cm = 0 v 4.8 pf input resistance v cm = 0 v >1 10 13 ? output characteristics output voltage high v oh r l = 2 k? 14.8 14.9 v ? 40c < t a < +125c 14.65 v r l = 600 ? 14.25 14.47 v ? 40c < t a < +125c 13.35 v output voltage low v ol r l = 2 k? ?14.9 ?14.8 5 v ? 40c < t a < +125c ?14.75 v r l = 600 ? ?14.68 ?14.6 v ? 40c < t a < +125c ?14.3 v short - circuit cu rrent i sc 79 ma power supply power supply rejection ratio psrr v sy = 4.5 v to 18 v 106 125 db ? 40c < t a < +125c 103 db supply current/amplifier i sy i out = 0 ma 1.6 1.85 ma ? 40c < t a < +125c 2.0 ma dynamic performan ce slew rate sr r l = 2 k? 17 2 +25/ ? 61 v/s gain bandwidth product gbp v in = 5 mv p - p, r l = 2 k?, a v = 100 16.3 mhz unity - gain crossover ugc v in = 5 mv p - p, r l = 2 k?, a v = ?10 9.3 mhz phase margin m 66 degrees ?3 db closed - loop bandwidth ?3 db a v = 1, v in = 5 mv p -p 9.50 mhz total harmonic distortion (thd) + noise thd + n 1 khz, g = +1, r l = 2 k?, v in = 6 v rms 0.00006 %
data sheet ada4610- 2 rev. a | page 5 of 20 parameter symbol test co nditions /comments min typ max unit noise performance peak -to - peak voltage noise e n p - p 0 .1 hz to 10 hz bandwidth 0.45 v p -p voltage noise density e n f = 10 hz 14 nv/hz f = 100 hz 8.5 nv/hz f = 1 khz 7.3 nv/hz f = 10 khz 7.3 nv/hz 1 offset voltage does not include solder heat resistance. 2 guaranteed by design and characterization.
ada4610- 2 data sheet rev. a | page 6 of 20 absolute maximum rat ings table 3 . parameter rating sup ply voltage 18 v input voltage v s output short - circuit duration to gnd observe derating curves storage temperature range ? 65c to +150c operating temperature range ? 40c to +125c junction temperature range ? 65c to +150c lead temperature (so ldering, 10 sec) 300c electrostatic discharge (h uman b ody m odel ) 2 5 00 v stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. table 4 . thermal resistan ce package type ja 1 jc unit 8 - lead msop (rm-8 ) 142 45 c/w 8 - lead soic_n (r - 8 ) 120 43 c/w 8 - lead lfcsp _vd (cp -8 -9) 57 12 c/w 1 ja is specified for worst - case conditions, that is, ja is specified for device soldered in circuit board for s urface - mount packages. esd caution
data sheet ada4610- 2 rev. a | page 7 of 20 typical performance characteristics t a = 25c, unless otherwise noted. 400 350 300 250 200 150 100 50 0 ?1000 ?800 ?600 ?400 ?200 0 200 400 600 800 1000 1200 offset voltage (v) number of channels 09646-003 ada4610-2 v sy = 5v t a = 25c soic figure 3 . input offset voltage distribution 350 300 250 200 150 100 50 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 bin (v/c) number of channels 09646-004 ada4610-2 v sy = 5v soic figure 4. t c v os distribution 500 400 300 200 100 0 ?100 ?200 ?300 ?400 ?500 ?5 ?4 ?3 ?2 ?1 0 1 2 3 4 5 common-mode input (v) input offset voltage (v) 09646-005 ada4610-2 v sy = 5v t a = 25c r l = figu re 5 . input offset voltage vs. common - mode input voltage 400 350 300 250 200 150 100 50 0 ?1000 ?800 ?600 ?400 ?200 0 200 400 600 800 1000 1200 offset voltage (v) number of channels 09646-006 ada4610-2 v sy = 15v t a = 25c soic figure 6 . input offset voltage distribution 350 400 300 250 200 150 100 50 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 bin (v/c) number of channels 09646-007 ada4610-2 v sy = 15v soic figure 7. t c v os distribution 500 400 300 200 100 0 ?100 ?200 ?300 ?400 ?500 ?15 ?10 ?5 0 5 10 15 common-mode input (v) input offset voltage (v) 09646-008 ada4610-2 v sy = 15v t a = 25c r l = figure 8 . inpu t offset voltage vs. common - mode input voltage
ada4610- 2 data sheet rev. a | page 8 of 20 1m 1 ?5 ?4 ?3 ?2 ?1 0 1 2 3 4 5 input bias a, input bias b (pa) v cmi (v) 09646-055 10 100 1k 10k 100k ada4610-2 soic v sy = 15v r l = t a = +25c figure 9. input bias current vs. common mode voltage 100m 10 1 100 1k 10k 100k 1m 10m 0.1 ?5 6 input bias a, input bias b (pa) v cmi (v) 09646-056 ada4610-2 soic v sy = 5v r l = +125c +85c +25c ?4 ?3 ?2 ?1 0 1 2 3 4 5 ?40c figure 10 . input bias current vs. common mode voltage and temperature 100 10 1 0.1 ?50 ?25 0 25 50 75 100 125 temperature (c) input bias current (pa) 09646-009 ada4610-2 v sy = 5v figure 11 . input bias current vs. temperature 1 0.1 0.01 0.1 1 10 100 i out source (ma) v dd ? v out (v) 09646-011 ada4610-2 v sy = 5v t a = 25c figure 12 . dropout voltage vs. source current 0.1 1 10 100 i out sink (ma) 09646-015 ada4610-2 v sy = 5v t a = 25c 10 1 0.1 0.01 v out ? v ss (v) figure 13 . dropout voltage vs. sink current 100 80 90 10 20 30 40 50 60 70 0 ?15 ?10 10 ?5 5 0 15 input bias current (pa) common-mode voltage (v) 09646-057 ada4610-2 soic v sy = 15v r l = t a = +25c figure 14 . input bias current vs . common - mode voltage
data sheet ada4610- 2 rev. a | page 9 of 20 1g 100m 10 100 1k 10k 100k 1m 10m 1 ?15 ?10 10 ?5 5 0 15 input bias current (pa) common-mode voltage (v) 09646-058 +125c ada4610-2 soic v sy = 15v r l = +85c +25c ?40c figure 15 . input bias current vs. common - mode voltage and temperature 100 10 1 0.1 ?50 ?25 0 25 50 75 100 125 temperature (c) input bias current (pa) 09646-012 ada4610-2 v sy = 15v figure 16 . input bias current vs. temperature 0.01 0.1 1 10 100 i out source (ma) 09646-014 1 0.1 0.01 v dd ? v out (v) ada4610-2 v sy = 15v t a = 25c figure 17 . dropout voltage vs. source current 10 1 0.1 0.01 1 0.1 0.01 10 100 i out sink (ma) v out ? v ss (v) 09646-018 ada4610-2 v sy = 15v t a = 25c figure 18 . dropout voltage vs. sink current 120 270 225 180 135 90 45 0 ?45 ?90 100 80 60 40 20 0 ?20 ?40 0.01 0.1 1 10 100 1k 10k 100k frequency (khz) gain (db) phase (degrees) 09646-016 ada4610-2 v sy = 5v t a = 25c r l = 2k? figure 19 . open - loop gain and phase vs. frequency 60 40 20 0 ?20 ?40 1 10 100 1k 10k 100k frequency (khz) gain (db) 09646-017 ada4610-2 v sy = 5v t a = 25c a v = +100 a v = +10 a v = +1 figure 20 . closed - loop gain vs. frequency
ada4610- 2 data sheet rev. a | page 10 of 20 1k 100 10 1 0.1 0.01 1 0.1 10 100 1k 10k 100k frequency (khz) z out (?) 09646-021 ada4610-2 v sy = 5v t a = 25c a v = +100 a v = +10 a v = +1 figure 21 . closed - loop output impedance vs. frequency 120 270 225 180 135 90 45 0 ?45 ?90 100 80 60 40 20 0 ?20 ?40 0.01 0.1 1 10 100 1k 10k 100k frequency (khz) gain (db) phase (degrees) 09646-019 ada4610-2 v sy = 15v t a = 25c r l = 2k? figure 22 . open - loop gain and phase vs. frequency 60 40 20 0 ?20 ?40 1 10 100 1k 10k 100k frequency (khz) gain (db) 09646-020 ada4610-2 v sy = 15v t a = 25c a v = +100 a v = +10 a v = +1 figure 23 . closed - loop gain vs. frequency 1k 100 10 1 0.1 0.01 1 0.1 10 100 1k 10k 100k frequency (khz) z out (?) 09646-024 ada4610-2 v sy = 15v t a = 25c a v = +100 a v = +10 a v = +1 figure 24 . c losed - loop output impedance vs. frequency 120 100 80 60 40 20 0 ?20 1 0.1 10 100 1k 10k frequency (khz) psrr (db) 09646-022 psrr? psrr+ ada4610-2 v sy = 5v t a = 25c figure 25 . psrr vs. frequency 120 140 100 80 60 40 20 0 1 0.1 10 100 1k 10k frequency (khz) cmrr (db) 09646-023 ada4610-2 v sy = 5v t a = 25c figure 26 . cmrr vs. frequency
data sheet ada4610- 2 rev. a | page 11 of 20 3 2 1 0 ?1 ?2 ?3 0 1 2 3 4 5 6 7 8 9 10 time (s) output voltage (v) 09646-027 ada4610-2 v sy = 5v t a = 25c a v = +1 r l = 2k? c l = 100pf figure 27 . large signal transient response 120 100 80 60 40 20 0 ?20 1 0.1 10 100 1k 10k frequency (khz) psrr (db) 09646-025 psrr? psrr+ ada4610-2 v sy = 15v t a = 25c figure 28 . psrr vs. frequency 120 140 100 80 60 40 20 0 1 0.1 10 100 1k 10k frequency (khz) cmrr (db) 09646-026 ada4610-2 v sy = 15v t a = 25c figure 29 . cmrr vs. frequency 12 8 4 0 ?4 ?8 ?12 0 1 2 3 4 5 6 7 8 9 10 time (s) output voltage (v) 09646-030 ada4610-2 v sy = 15v t a = 25c a v = +1 r l = 2k? c l = 100pf figure 30 . large signal transient response 75 50 25 0 ?25 ?50 ?75 0 1 2 3 4 5 6 7 8 9 10 time (s) output voltage (mv) 09646-028 ada4610-2 v sy = 5v t a = 25c a v = +1 r l = 2k? c l = 100pf figure 31 . small signal transient response 100 10 1 0.001 0.01 0.1 1 10 100 frequency (khz) voltage noise density (nv/ hz) 09646-033 ada4610-2 v sy = 5v t a = 25c fi gure 32 . voltage noise density
ada4610- 2 data sheet rev. a | page 12 of 20 60 50 40 30 20 0 10 0.01 0.1 1 capacitance (nf) overshoot (%) 09646-034 os? os+ ada4610-2 v sy = 5v t a = 25c a v = +1 r l = 2k? v in = 100mv p-p figure 33 . overshoot vs. load capacitance 75 50 25 0 ?25 ?50 ?75 0 1 2 3 4 5 6 7 8 9 10 time (s) output voltage (mv) 09646-031 ada4610-2 v sy = 15v t a = 25c a v = +1 r l = 2k? c l = 100pf figure 34 . small signal transient response 100 10 1 0.001 0.01 0.1 1 10 frequency (khz) voltage noise density (nv/ hz) 09646-036 ada4610-2 v sy = 15v t a = 25c figure 35 . voltage noise den sity 50 45 40 35 30 0 25 20 15 10 5 0.01 0.1 1 capacitance (nf) overshoot (%) 09646-037 os? os+ ada4610-2 v sy = 15v t a = 25c a v = +1 r l = 2k? v in = 100mv p-p figure 36 . overshoot vs. load capacitance
data sheet ada4610- 2 rev. a | page 13 of 20 comparative voltage and variable voltage graphs ?60 ?80 ?120 ?140 ?160 ?100 ?40 0.1 1 10 100 frequency (khz) channel separation (db) 09646-039 ada4610-2 v sy = 15v t a = 25c r l = 2k? figure 37 . channel separation 1 0.1 0.01 0.001 0.0001 0.00001 0.1 0.01 0.001 1 10 amplitude (v rms) thd + n (%) 09646-040 ada4610-2 v sy = 15v t a = 25c r l = 2k? f in = 1khz thd + n % figure 38 . thd + n vs. amplitude 0.01 0.001 0.0001 0.00001 1 0.1 0.01 10 100 frequency (khz) thd + n (%) 09646-041 ada4610-2 v sy = 15v t a = 25c r l = 2k? v in = 5v rms 500khz band-pass filter 80khz band-pass filter figu re 39 . thd + n vs. frequency 16 12 8 4 0 ?4 ?8 ?12 ?16 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 time (ms) voltage (v) 09646-042 ada4610-2 v sy = 15v t a = 25c a v = +1 r l = 2k? c l = 100pf output input figure 40 . no phase reversal 300 200 100 0 ?100 ?200 ?300 0 1 2 3 4 5 6 7 8 9 10 time (sec) voltage (nv) 09646-043 ada4610-2 v sy = 15v t a = 25c r l = 2k? figure 41 . voltage noise , 0.1 hz to 10 hz 12 10 8 6 4 2 0 0 0.2 0.4 0.6 0.8 1.0 0.1% 0.01% 1.2 1.4 settling time (s) step size (v) 09646-044 ada4610-2 v sy = 15v t a = 25c a v = +1 r l = 2k? c l = 20pf positive step figure 42 . positive step settling time
ada4610- 2 data sheet rev. a | page 14 of 20 12 10 8 6 4 2 0 0 0.2 0.4 0.6 0.8 1.0 0.1% 0.01% 1.2 1.4 settling time (s) step size (v) 09646-045 ada4610-2 v sy = 15v t a = 25c a v = +1 r l = 2k? c l = 20pf negative step f igure 43 negative step settling time 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 0 5 10 15 20 +125c +25c 25 30 v sy (v) i sy for both amplifiers (ma) 09646-047 +85c ?40c ada4610-2 r l = figure 44 . supply current vs. supply voltage and temperature
data sheet ada4610- 2 rev. a | page 15 of 20 application s information comparator operation although op amps are quite different from comparato rs, occasionally an unused section of a dual or a quad op amp may be used as a comparator; however, this is not recommended for any rail - to - rail output op amp. for rail - to - rail output op amps, the output stage is generally a ratioed current mirror with bip olar or mosfet transistors. with the part operating open loop, the second stage increases the current drive to the ratioed mirror to close the loop. however, the second stage cannot close the loop , which results in an increase in supply current. with the o p amp configured as a comparator, the supply current can be signifi - cantly higher (see figure 45 ). configuring a n unused section as a voltage follower with the noninverting input connected to a voltage within the input voltage ran ge is recommended . the ada4610 - 2 has a unique output stage design that reduces the excess supply current, but does not entirely eliminate this effect when the op amp is operating open loop. 8 7 6 5 4 3 2 1 0 0 4 8 12 16 20 24 28 32 supply voltage (v) i sy for both amplifiers (ma) 09646-053 comparator, v out = low follower comparator, v out = high figure 45 . supply current vs. supply voltage 1+ + ? d31 q28 q27 v out 09646-054 v ee q15 q14 q13 q17 q16 q23 q29 q30 j1 j2 q9 q5 q4 q8 q1 q6 q7 q25 q24 q18 q12 i 2 i 3 i 4 c2 c1 c3 de1 v in+ v in? c4 a2 a1 r16 r7 r6 r3 r5 r2 r10 r1 1 rc4 d26 r16 v cc de5 de6 de3 de2 de4 figure 46 . simplified schematic
ada4610- 2 data sheet rev. a | page 16 of 20 outline dimensions controlling dimensions are in millimeters; inch dimensions (in p arentheses) are rounded-of f millimeter equiv alents for reference onl y and are not appropria te for use in design. compl iant t o jedec st andards ms-012-aa 012407 -a 0.25 (0.0098) 0.17 (0.006 7) 1.27 (0.0500) 0.40 (0.0157) 0.50 (0.01 96) 0.25 (0.0099) 45 8 0 1.75 (0.0688) 1.35 (0.0532) sea ting plane 0.25 (0.0098) 0.10 (0.0040) 4 1 8 5 5.00 (0.19 68) 4.80 (0.18 90) 4.00 (0.1574) 3.80 (0.1497) 1.27 (0.0500) bsc 6.20 (0.2441) 5.80 (0.2284) 0.51 (0.02 01) 0.31 (0.01 22) coplanarity 0.10 figure 47 . 8 - lead standard small outline package [soic_n] narrow body (r - 8) dimensions show n in millimeters and (inches) compliant to jedec standards mo-187-aa 6 0 0.80 0.55 0.40 4 8 1 5 0.65 bsc 0.40 0.25 1.10 max 3.20 3.00 2.80 coplanarity 0.10 0.23 0.09 3.20 3.00 2.80 5.15 4.90 4.65 pin 1 identifier 15 max 0.95 0.85 0.75 0.15 0.05 10-07-2009-b figure 48 . 8 - lead mini small outline package [msop] (rm - 8) dimensions shown in millimeters
data sheet ada4610- 2 rev. a | page 17 of 20 1 exposed p ad bot t om view 0.50 bsc pin 1 indic a t or 0.50 0.40 0.30 t op view 12 max 0.70 max 0.65 ty p 0.90 max 0.85 nom 0.05 max 0.01 nom 0.20 ref 2.23 2.13 2.03 4 1.60 1.50 1.40 3.25 3.00 sq 2.75 2.95 2.75 sq 2.55 5 8 pin 1 indic a t or sea ting plane 0.30 0.23 0.18 0.60 max 0.60 max for proper connection of the exposed pad, refer to the pin configuration section of this data sheet. 04-06-2012- a figure 49 . 8 - lead lead frame chip scale package [lfcsp_vd] 3 mm 3 mm body, v ery thin, dual lead (c p- 8 - 9) dimensions shown in millimeters ordering guide model 1 temperature range package description package option branding ada4610 -2 a cpz -r 7 ? 40c to +125c 8 - lead lfcsp _vd cp -8 -9 a2u ada4610 -2 acpz -rl ? 40c to +125c 8 - lead lfcsp _vd cp -8 -9 a2u ada4610 -2 armz ? 40c to +125c 8 - lead msop rm - 8 a2u ada4610 - 2armz - r7 ?40c to +125c 8 - lead msop rm - 8 a2u ada4610 - 2 armz - rl ? 40c to +125c 8 - lead msop rm - 8 a2u ada4610 - 2 arz ? 40c to +125c 8 - lead soic_n r - 8 ada4610 -2 arz -r7 ? 40c to +125c 8 - lead soic_n r -8 ada4610 -2 arz -rl ? 40c to +125c 8 - lead soic_n r -8 ada4610 -2 brz ? 40c to +125c 8 - lead soic_n r -8 ada4610 -2 brz -r7 ? 40c to +125c 8 - lead soic _n r -8 ada4610 -2 brz -rl ? 40c to +125c 8 - lead soic_n r -8 1 z = rohs compliant part .
ada4610- 2 data sheet rev. a | page 18 of 20 notes
data sheet ada4610- 2 rev. a | page 19 of 20 notes
ada4610- 2 data sheet rev. a | page 20 of 20 notes ? 2011 C 2012 analog devices, inc. all rights reserved. trademarks and registered trademarks are the property of their respective owners. d09646 - 0 - 5/12(a)


▲Up To Search▲   

 
Price & Availability of ADA4610-2ACPZ-R7

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X